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Abstract 

 
Data dissemination overlays are central in scalable 

multicast protocols and are used in many other kinds 
of distributed systems. Such overlays must self-
assemble, and in situations where there are multiple 
protocol options, a suitable choice of protocol may be 
key to achieving desired levels of performance, relia-
bility, or other QoS objectives.  Here, we describe 
SOLO, a new platform we’re constructing as part of 
Cornell’s Live Objects project.  SOLO automates the 
task of discovering the runtime environment by sensing 
such properties as NAT or firewall characteristics, 
bottlenecks and bandwidth fluctuations, etc.  This pa-
per presents the SOLO architecture and evaluates its 
effectiveness under a range of realistic scenarios that 
would be expected in wide-area environments. 
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1. Introduction 
 

By making it possible to efficiently transmit packets 
to potentially large numbers of destinations, multicast 
dissemination patterns arise in systems that stream 
media files, replicate data, or support collaborative 
work. However, because the Internet WAN has 
evolved to optimize support for TCP and point-to-point 
UDP, multicast generally operates as an end-to-end 
service, supported by packages that struggle to work 
around such barriers as firewalls, network bottlenecks 
and NAT boxes. There exists a large body of work on 
multicast scalability [17] and application layer multi-
cast (ALM) [18], but each solution tends to have its 
own special environmental assumptions.  Deploying 
multicast in real WAN settings remains difficult. 

Yet there has never been a wider variety of interest-
ing multicast data distribution schemes. When availa-
ble, router-supported IP multicast can provide high 
reliability [7] [19] and optimization for mobile devices 
in LAN settings [13]. Overlay-based ALM has become 
common in WAN data-streaming platforms, and some 
applications built over these capabilities are extremely 
popular, for example in support of large-scale content 
distribution.  In settings where IP multicast is permit-
ted, protocols that exploit it can achieve exceptional 
performance and scalability. 

These developments establish the context for our 
work.  SOLO, a new platform on which we report here, 
assists application designers in delaying choices: an 
application can incorporate more than one possible 
transport protocol, selecting the appropriate communi-
cation infrastructure for their application based on 
runtime conditions that our tools discover automatical-
ly.  SOLO also assists the application in configuring 
the selected communication layer to conform to per-
formance and topology properties of the network, and 
can orchestrate adaption if conditions change. 

SOLO runs in potentially complex environments, 
and while multicast is a primary focus, the system can 
also be used for other kinds of overlays or transport 
choices.  WAN systems make heavy use of NAT boxes, 
and various firewall settings can block the basic packet 
transfer between hosts. Communication protocols that 
are blind to such barriers will perform poorly or fail. 
Moreover, unstable bandwidth and delay is common in 
edge networks, and both sometimes fluctuate over time; 
for some multicast algorithms, these kinds of issues 
can defeat optimization decisions or trigger failures. 
Host mobility is a growing challenge: when a host 
moves from one access point to another, configuration 
changes may be needed.  

These are not insurmountable challenges.  Products 
such as BitTotrrent [5] and PPLive [6] have established 
that a sufficiently sophisticated designer can take many 
cases into account. But unless we can find ways to 
reuse the needed infrastructure, such solutions benefit 
just a single application.  Moreover, if multiple appli-
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cations run on the same node, there may be a great deal 
of redundant overhead as each struggles to detect its 
environment and to monitor for changes. 

SOLO is not the first system to help application de-
velopers solve these kinds of problems.  For example, 
BBN’s QuO [8] extends CORBA with a quality of 
service architecture. Developers document a set of 
runtime cases and, for each, its performance needs 
using the QuO interface language.  The runtime system 
automatically detects conditions, determines which 
case applies, and the components configure themselves 
appropriately; if conditions later change, QuO sends 
events that notify the components and can trigger re-
configuration.  

However, our problem is harder than the one solved 
by QuO, which ran in enterprise LAN settings.  It is 
much more difficult to talk about system-wide perfor-
mance characterization in WANs, where conditions 
may vary drastically from region to region and where 
there is no easy way to collect metrics at a single server. 
Moreover, even for a single WAN application, perfor-
mance needs can vary in use-dependent ways.  For 
example in a content sharing system, the lag-tolerance 
for a live-streaming use may depend on the kind of 
content being streamed.  

SOLO operates in stages.  It allows a system to spe-
cify a set of possible multicast components before 
deployment. At runtime, SOLO instruments the net-
work and selects the best multicast components within 
the set. It then provides continuous information up-
dates, helping the system detect and react to such prob-
lems as a loss of bandwidth on a bottleneck link on 
which a group of hosts depends. By standardizing the 
model and associated events, we help the developer 
understand what conditions should be handled and the 
styles of dynamic adaptation to consider using. 

The SOLO mechanisms operate locally, at the end-
hosts where the application runs.  Although it would be 
interesting to explore mechanisms for unifying end-
host data into some form of shared distributed database, 
we leave this and the mechanisms it would enable for 
future work.  For the present, communication protocols 
constructed incorporate their own mechanisms for 
sharing SOLO’s node-status information. 

SOLO was built using Cornell’s Live Objects plat-
form (LO) [11], [12]. LO is a component-oriented 
architecture that permits distributed applications to be 
constructed as mashups (graphs) of components, de-
scribed in XML “recipes” and then shared via files or 
email. SOLO runs as an LO application, and leverages 
many LO features.  Nonetheless, SOLO can be used as 
a standalone service by a multicast platform otherwise 
oblivious to the LO infrastructure. 

The contributions of this paper are as follows: 
 

 We present an environment-aware architecture for 
designing multicast systems. 
 

 We provide a set of tools that automate detection 
and monitoring of the network, with functionality 
aimed at the application designer, protocol dep-
loyment and runtime adaptation. 

 We show how the componentized Live Objects 
architecture was used to simplify SOLO. 

 
2. SOLO Architecture 
 

This section starts with a brief overview of the SO-
LO architecture, and then gives a more detailed de-
scription of its major components. 

 
2.1. Multicast Components 

 
SOLO makes some assumptions about the protocol 

components with which it operates.  First, it assumes 
that these were co-designed and intended to operate 
side by side.  For example, a multicast option set might 
include an ALM for use in the Internet WAN and an IP 
multicast-based protocol for use when peers find them-
selves in a LAN setting that supports IP multicast.  
Individual end-hosts might find that only the ALM 
version can be used, or might be capable of launching 
both.  When multiple transports are used by a single 
application, the transport layer (not SOLO) must relay 
messages between protocol instances.   

SOLO also assumes that each protocol has a boot-
strapping mechanism, whereby protocol components 
can locate peers and establish initial contact with them 
(perhaps directly, or perhaps through a reachback site 
in the Internet).  SOLO itself provides no membership 
tracking, but once components have an initial peering 
relationship, SOLO can help them learn about one-
another’s environment, as discussed in Section 3.  

The assumptions just described are well matched to 
the behavior of multicast platforms such as PPLive [6] 
and AnySee [15], on which one of us (Huang) was a 
lead developer.   Indeed, we restructured code from 
these to undertake the evaluation reported in Section 4. 
 
2.2 SOLO Overview 
 

SOLO has three components: the Local Detection 
Service, the Multicast Selector and the Deployment 
Helper. As shown in Figure 1, the Multicast Selector is 
a kind of rule-driven component library filter for the 
system designer.  With it, an application is able to 
specify a set of transport protocols and the conditions 
under which each can be used.   
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The Deployment Helper selects the available multi-
cast components based on detected conditions, and 
then provides the component with configuration help 
to assist it during initialization and drive adaptation if 
conditions change.  The local detection service tests the 
environment.  For example, it discovers bottleneck 
links, and if a node has interfaces on multiple networks, 
it determines the connectivity of each interface.   

 

 
 

Figure 1. SOLO architecture 
 
SOLO’s Local Detection is focused on the state of 

the host network interfaces, NAT and firewall settings, 
and the performance of the deployed network. It works 
by pinging nodes on the path from the end host to the 
closest DNS.  Previous studies have suggested that this 
approach has a high likelihood of revealing connectivi-
ty limits and bottleneck links [1].  Below, we’ll see 
how information collected this way can also be used to 
group nodes co-located behind a shared bottleneck. 

 
2.2. Multicast Selector 

 
In SOLO, multicast components are only launched 

if they find themselves in a compatible runtime envi-
ronment. As noted earlier, rather than cluttering a sin-
gle multicast protocol with all sorts of adaptively se-
lected configuration options, SOLO encourages the 
designer to build a set of protocols, each with its own 
relatively rigid runtime requirements, but integrated to 
be capable of running side-by-side.  

SOLO’s Multicast Selector uses a set of rules to de-
cide which protocols to launch. Each includes a Com-
munication Restriction and (optionally) a Performance 
Requirement. A Communication Restriction is 
represented as a quadruple (D, T, P, O). In each 
quadruple, D specifies the direction of communication 

to be tested, and T the transport layer protocol (current-
ly, TCP or UDP). P selects a specific application pro-
tocol, and O is used to designate the existence of per-
formance requirements. The available value for each 
field is listed in Table 1. 

 
Table 1. Communication Restriction value 
 

Fields Values Meaning 
D O Outward only 

A All by default 
T TCP TCP only 

UDP UDP only 
A All by default 

P S Permit specified only 
A Permit all 

O Y Do need performance 
N No specific performance 

 
The restriction associated with P gives the rule de-

signer access to additional runtime tests. For instance, 
if the designer includes a protocol component that 
operates using HTTP messages for use in networks 
where the NAT and firewall policy permit such mes-
sages to reach the end-host, the quadruple should be (O, 
TCP, S, N), and an extra parameter to P would tell 
SOLO that the required protocol is HTTP. Similarly, 
SOLO can test for connectivity to a rendezvous node, 
or to servers in a data center.  SOLO can support the 
full range of WAN tests that are used to configure 
PPLive and AnySee. 

SOLO’s Performance Requirement rules describe 
network performance constraints. These are used to 
rule out protocol choices that would fail for lack of 
bandwidth, excessive latency, or other readily detecta-
ble problems.  These rules take the form of a list of 
tests described by three properties: (F, RL, RH).  F 
represents the performance metric of interest, and 
RL~RH specify the acceptable range of performance 
values, as illustrated in Table 2. For example, the de-
signer of an overlay-multicast voice conference system 
could specify a requirement like (D, 0, 30ms) to encode 
the minimal voice QoS properties from [16]. 

 
Table 2. Performance Requirement value 

 
Fields Values Meaning 
F D Delay 

B Bandwidth 
L Loss rage 

RL $set Range lower limit 
N No lower limit 

RH $set Range upper limit 
N No upper limit 
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SOLO’s performance tests are all local, evaluated 
by measuring performance of the network route from 
the local host to its DNS server.  Thus, even if two 
hosts both conclude that some protocol can be instan-
tiated, it might still be unable to directly connect to 
some of the other hosts running the same application.  

 
2.3. Deployment Helper 

 
After filtering, each SOLO-equipped host will in-

itialize one or more protocol components, as seen in 
Figure 2.  In this example, a multicast application with 
components on hosts A and C has concluded that only 
one of the available multicast transports was suitable 
on each, but host B is running both, and will relay 
messages between them.  

For interface standardization, when multiple proto-
cols are available, they will typically implement a 
single interface type.  For the experiments reported 
later in this paper, we defined a base chunk-pull over-
lay multicast interface with four messages types: Buffer 
Snapshot: exchange the buffer condition; Peer Infor-
mation: contains the peer address to communicate; 
Data Request: requests data in a pull manner; and Data 
Chunk: which contains the distributed data. We then 
built several multicast protocols, each inheriting from 
this shared interface type. 

 

 
 

Figure 2. Component variation in network 
 
The SOLO Deployment Helper is used to configure 

communication components.  For example, suppose 
that a transport layer communication method is sensi-
tive to NAT and firewall settings.  Even though nodes 
A and B may both conclude that component X can be 
used, X may still be prevented from making direct 
peering connections between A and C.  To assist pro-
tocols in detecting such problems, SOLO builds a list 
of EUIDs (Environment Unique Identities) that 
represent the communication characteristics of each 

host.  The EUID data is maintained locally at end hosts 
using SOLO, but protocol components can share this 
data with peers (either during their bootstrap exchange, 
and then later during normal execution).  Thus, when A 
attempts to peer with C, it will have a set of EUIDs 
describing C’s local environment. 

The EUID contains the environment information 
detected locally including the Communication Restric-
tion and network interface information, as shown in 
Figure 3. The {Pub Addr} field represents the NAT 
address visible to external hosts, while the {Proto ID} 
points to the firewall allowable application layer proto-
col if {P} is set to value S (as Table 1).    

 

 
 

Figure 3. EUID structure 
 
Given a set of EUIDs for a remote host with which 

it needs to communicate, a SOLO-equiped node can 
compare the remote EUID data with its own to identify 
communication options that might work. For example, 
with reference to Figure 2, host A cannot talk directly 
to host C, but is able to peer with host B using trans-
port component 1, and C can peer with B using trans-
port 2.    

 
2.4. Local Detection Service 

 

 
 

Figure 4. Local Detection Service components 
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The technical core of SOLO is its local detection 
service.  The service is composed of two parts: the 
Host Interface Detector and the Bottleneck Identifier. 

 
2.4.1. Host Interface Detector. The role of this 

module is to collect data from each network interface, 
tabulating it into a form from which EUID records can 
be constructed.  The EUID is defined on a per-interface 
basis because, in large deployments, it is common to 
encounter multi-homed hosts. For example, routers and 
multi-ISP homed servers almost always have multiple 
interfaces. We see this in Figure 5, where Node A has 
this sort of multi-homed configuration; the Whois utili-
ty can be used to discover that the same machine holds 
different addresses in two ISPs. 

Failing to distinguish between interfaces can lead to 
errors.  For example, many multicast systems use the 
host name to acquire the local interface address to bind, 
or simply bind on all the interfaces using zeroes in the 
address field of the bind argument. Such approaches 
have hidden problems.  The former method may lead 
failure or inefficiency of connection attempts from 
remote hosts which are actually nearer to some other 
unbound interface in the routing table.  Simply binding 
on all interfaces may open an unsecure port between 
external network and private network. 

By treating local interfaces separately, SOLO is 
able to describe a host in sufficient detail to permit 
correct configuration decisions. We note that multi-
homing information is used in many ALM and VOIP 
protocols.  For example, ALMs often route data 
through different ISPs to improve performance and 
availability, and VOIP protocols often do so to get the 
lowest possible delays.  

 

 
 

Figure 5. Bridge of multi-interface host 
 

Another role of the Host Interface Detector is to 
sense access-point changes for mobile devices. When a 
mobile device migrates between wireless routers, the 
device’s EUID values will often change.  Protocol 
configurations that are keyed by the EUID value will 
unambiguously identify the router the protocol is try-
ing to use.  Finally, the Host Interface Detector checks 

for a NAT/Firewall and senses the associated settings, 
using the method detailed in [4]. 

 
2.4.2. Bottleneck Identifier. It is common to find 

groups of hosts that reside behind a bottleneck link on 
the edge network, especially in a home network or a 
small corporate LAN.  Few overlay multicast systems 
are able to optimize themselves for such cases, because 
they lack the needed environment information to detect 
them. Thus, in current overlay multicast platforms, it is 
not uncommon to see heavily traffic interference on the 
shared link. In section 4, we demonstrate this problem 
experimentally. The work described in [20] also identi-
fied this phenomenon, which it models as a correlation 
called LLC. 

 

 
 

Figure 6. Clustered edge peer group 
 
SOLO’s Bottleneck Identifier helps multicast com-

ponents identify possible bottleneck link by grouping 
peers on different sides of it. We believe our approach 
to be a new one.  Unlike the work of [2] [9], which 
focuses on direct measurement of end-to-end band-
width, SOLO clusters peers into groups as shown in 
Figure 6, and suggests the overlay multicast compo-
nent best suited for use under the detected conditions. 

The key challenge is to recognize peers in the same 
group. For peers behind the same NAT, it is natural 
and simple to group them by checking public IP ad-
dress of NAT box. But this is not a complete solution 
since an edge network may have multiple public routa-
ble IP addresses, while sharing a single link. 

Some Peer-to-Peer systems use the public IP prefix 
to identify clusters of peers. But this approach is too 
coarse-grained to find a bottleneck link because some 
ISPs assign the same IP prefix to machines distributed 
over large geographical areas [14]. Another solution is 
to use the local DNS server address, a method common 
in CDN systems. However, this method is also known 
to be too coarse-grained.  For example, studies by 
AT&T [21] found that only 69% of hosts in the same 

ISP 2ISP 1

Node A

A    EUID1
A EUID2

Whois 
Database A    ISP1

A ISP2

Possible
Bottleneck link

WANEdge Group
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autonomous systems (ASs) are configured to use the 
local DNS servers.  

In SOLO, we use traceroute to detect the routing 
addresses between gateway and the local DNS server, 
with max hop count (TTL) set to 4. This is surprisingly 
effective, and confirms an early study [10] in which it 
was found that network latency is dominated by the 
last few hops from the core Internet to a destination 
host. Accordingly, SOLO constructs an address stack 4 
hops deep and includes this into the EUID.  Given a 
pair of EUIDs for distinct hosts, it is now possible to 
group them, as illustrated by the tree structure shown 
in Figure 7.  

 

 
 

Figure 7. Address stack and grouping tree 
 
A protocol component using SOLO can employ this 

address stack to detect possible bottlenecks. For exam-
ple, based on the grouping tree, a multicast component 
can configure itself to aggregate and evaluate the 
bandwidth between different levels of groups. If the 
data transfer between two levels reveals a high loss rate, 
the link shared by the inner group might be a bottle-
neck link. Moreover, bandwidth fluctuation can be also 
discovered. In section 4, we show an experiment in this 
method groups local peers to optimize streaming per-
formance despite the limitations imposed by a bottle-
neck link. 
 
3. Implementation based on Live Objects 
 

In this section, we provide additional details con-
cerning our implementation of SOLO within the exist-
ing Live Objects platform. We start with some basic 
background concerning the Live Objects work, and 
then focus on SOLO per-se. 

 
3.1. Live Distributed Objects 

 
SOLO was constructed using the Windows version 

of Live Objects, and was coded in the .NET C# lan-

guage. The live objects platform was created as a tool 
for supporting distributed and often collaborative ap-
plications that might mix content hosted on web ser-
vices platforms with event streams or other media 
implemented through direct peer-to-peer protocols. 
Once created, a live object has an XML representation 
that can be stored in files, sent over email, etc. Users 
who activate the same live object will typically see 
instances of some form of reliable, consistent, distri-
buted functionality. 

An individual live object represents some form of 
reusable protocol or application component, but it is 
rare for a live object to be used in isolation. More often, 
objects are composed and interoperate with other live 
objects. Thus, a typical application will be a graph of 
connected objects: a “mashup”.  Such a mashup, as it 
might look on a single host, is shown in Figure 8.   

 

 
 

Figure 8. Structure of a live objects application 
 
Notice that the bottom object in the application, the 

“transport” protocol, peers with other instances of the 
same object on remote machines. SOLO can be unders-
tood as selecting one or more such live distributed 
protocol objects, and (in effect) reconfiguring the ma-
shup dynamically on the basis of the environment.   

Communication between live objects involves pass-
ing typed events over connected endpoint pairs. We see 
some examples of endpoints in Figures 8 and 9. As in 
other component-based systems (including Micro-
soft’s .NET platform, on which Live Objects was in-
itially based), each endpoint consists of a collection of 
function interfaces that can be invoked asynchronously. 
The live objects platform performs type checking, 
determines which function to invoke when events cross 
interfaces, and glues the objects together. 

The key strengths of the live objects model stem 
from its flexibility.  For example, live objects can inte-
grate “pure edge” protocols, such as data replication, 
with content pulled from “cloud computing” platforms, 
such as web services systems that support the usual 
SOA standards. Additionally, live objects have a repre-
sentation that can be shared through an XML encoding. 

SOLO leverages the live objects type-checking me-
chanisms.  For each communication protocol, SOLO 
generates endpoint references that encode the informa-



7 
 

tion in the Communication Restrictions and Perfor-
mance Requirement rule sets, representing these are 
endpoint type constraints.   At runtime, SOLO gene-
rates an additional endpoint, annotated with the dis-
covered properties of the environment.  The live ob-
jects type-checking algorithm will then select matching 
endpoint(s), activating only the protocol components 
that satisfy the local restrictions. 

 

 
 

Figure 9. Two connected Endpoints 
 
3.2. Rules for Filtering Multicast Components 

 
To illustrate these ideas, we describe the way that 

we use the mechanism to select an appropriate multi-
cast protocol.   Table 3 shows the matched endpoints to 
Communication Restriction and Performance Re-
quirement. In Table 3, the Fields D, T and P are 
matched with the same fields in Communication Re-
striction. When they are set to A, Multicast Selector 
will skip checking the endpoints. The last field is for 
Performance Requirement. Figure 10 illustrates the 
process by which rule-checking selects the appropriate 
modules.  

 
Table 3. Endpoints for Communication Re-

striction and Performance Requirement 
 

Fields Values Endpoint Interface 
D O [D:O] 

OnDisableContacted ( ) 
A  

T TCP [T:TCP] 
OnDisableUDP () 

UDP [T: UDP] 
OnDisableTCP () 

A  
P S [P: S: Protocol ID] 

OnPrivProtocolParser ( )
A  

F 
RL 
RH 

 [F: RL: RH] 
OnOutRange ( ) 

 
Recall from Section 2.2 that after filtering the avail-

able protocol modules, SOLO passes a list of EUID 

values to the multicast modules, which share these 
during their bootstrapping protocol.  The desired effect 
is that peers can compare EUID values and thus agree 
on the best option for connecting.  In some situations, 
this will mean that a single host ends up running mul-
tiple protocols side-by-side. 

 

 
 

Figure 10. Process of checking rules 
 
3.3. Multiplexer 

 
When a host runs multiple transport protocols, SO-

LO assists them in handling the incoming traffic using 
a communication multiplexer.  This runs beneath the 
multicast transports, vectoring messages to the appro-
priate component, and partially automates the selection 
of the best communication route to use. 

The Multiplexer is designed to listen on three kinds 
of ports.  Most protocols use some mixture of dedicat-
ed TCP and UDP sockets, and the multiplexer can 
monitor these if desired (for example, if two multicast 
protocol modules share a single UDP port).  Addition-
ally, WAN protocols used in systems such as AnySee 
often include a fall-back HTTP web-services scheme 
for use when all else fails. As shown in Figure 11, the 
multiplexer inserts a header of its own on outgoing 
traffic and interprets the headers of incoming messages, 
vectoring them appropriately.  Internally, the parser 
used for HTTP ports is implemented as a live object, 
and could be replaced with other objects to support 
other forms of last-resort rendezvous/tunneling solu-
tion (e.g. via a database, IM, or email system). 
 

 
 

Figure 11. Multiplexer 
 

Interface A ( )
Interface B ( )
Interface C ( )

D ( )
E ( )
F ( )

Interface D ( )
Interface E ( )
Interface F ( )

A ( )
B ( )
C ( )

Endpoint 1 Endpoint 2
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4. Experiments on SOLO Detection Service 
 

We designed an experiment to illustrate the effec-
tiveness of the SOLO platform, focusing initially on 
the performance of the SOLO Local Detection Service. 
This experiments was run on the Emulab testbed [3] at 
Utah and focuses on our running example: a multicast 
transport that uses SOLO to adaptively configure itself. 
 
4.1. Bottleneck Influence on Multicast 

 
Recall that in section 2.4.3, we emphasized the sen-

sitivity of current overlay based multicast to bottleneck 
link performance.  To establish ground-truth, we began 
by designing an experiment to illustrate this issue, as a 
function of bottleneck topology. We studied a network 
consisting of two sets of hosts connected with a 
1.5Mbps link. One set of hosts represents the External 
100Mbps WAN and the other represents the local 
group behind the bottleneck link connected in the same 
100Mbps LAN. The overlay multicast algorithm em-
ployed is a swarm-style mesh-based overlay that dis-
seminates data using a pull-based local-rarest-first rule. 
Our experiment models a streaming download in which 
a source node generates a 1Mbps bit-rate stream, seed-
ing randomly selected clients with chunks of data that 
they then collaborate to share.  The data consists of a 
series of 180 “stream buffers” each containing 1 
second of video content.  The chunk size was set to 0.2 
seconds of data, and each experiment lasts for 20 mi-
nutes.  A stream buffer must be completely received on 
time; partial buffers are discarded.  

We simulated a setup in which nodes reside either 
in the Internet WAN (W) or within several LANs (L), 
each situated behind a bottleneck. Lacking any form of 
locality awareness, download swarms will attempt to 
fetch chunks over the bottleneck links more or less at 
random.  Our bottlenecks can serve no more than two 
streams concurrently, hence if too much remote com-
munication occurs, download quality suffers.  This is 
visible in Table 4, where at most 13% of buffers were 
successfully received with 5 LANs and 5 nodes in each.  

 
Table 4. Isolated group experiment result 

 
# of W # of L # in L Avg. Buffer Percentage
4 5 5 12.695% 
4 1 20 4.089% 
16 1 20 3.978% 

 
The rest two rows also show that the download 

speed is only affected by the number of nodes in the 
same LAN, representing the severity of confliction at 
the bottleneck link. 

Figure 12 looks more closely at the average buffer 
quality as a function of time.  We look at hosts situated 
in five LANs, with 4 additional hosts in the Internet 
WAN (row 1 of Table 4).  Initially, the LAN hosts 
buffers fill nearly linearly, reaching 20%.  However, as 
nodes begin to reach out for rare chunks, they stress the 
bottleneck links, and most buffers are still incomplete 
when the timeout expires. 
 

 
 

Figure 12. Buffer condition of isolated 5 LANs 
with 4 WAN hosts 

 
 

Table 5. Completed group experiment result 
 

# of W # of L # in L Avg. Buffer Percentage
4 5 5 35.869% 
4 1 20 24.827% 
16 1 20 15.993% 
 
 

 
 

Figure 13. Buffer condition of locality biased 5 
LANs with 4 WAN hosts 

 
It is natural to wonder if the locality-aware overlay 

mechanisms that have been proposed for BitTorrent 
and PPLive would improve these results.  Accordingly, 
we repeated our experiment with same environment 
settings, but using locality-aware biasing mechanisms. 
Table 5 and Figure 13 show the results. We can see 
that with bias in favor of nearby chunks the bottleneck 
stress problem is delayed, and the overall success rate 
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for buffer reception rises.  Yet as illustrated in Figure 
13, the bottleneck remains a problem: after each node 
in a LAN has obtained all the chunks accessible from 
other hosts in the same LAN, app nodes all turn to-
wards WAN data sources for rare chunks, overloading 
the bottleneck link. 

 
4.2. Optimization Result based on SOLO 

 
We next modified our system to use the tools pro-

vided by SOLO. SOLO is able to distinguish between 
LAN and WAN nodes, and peers within the same re-
gion can discover this by comparison of the address 
stacks encoded into the EUID structure.  Recall that 
during the bootstrapping stage, peers will have discov-
ered one-another and shared EUID information.   On 
the other hand, because SOLO lacks a replication me-
chanism of its own, applications that share EUID data 
must be aware that it could become stale as nodes join, 
leave, or move about. 

Given the possibility of recognizing of co-located 
nodes, it is easy to build a bottleneck-link aware va-
riant of the swarming protocol. In this scheme, nodes 
issue chunk-requests preferentially to nodes in the 
same group.  A single group leader is the only one to 
request data from outside the group.  Notice that this 
scheme should be quite robust even if EUID data 
evolves at runtime. 

 
Table 6. Completed group experiment result 

 
# of W # of L # in L Avg. Buffer Percentage
4 5 5 70.453% 
4 1 20 72.660% 
16 1 20 66.452% 
 
 

 
 

Figure 14. Buffer condition of optimized 5 
LANs with 4 WAN hosts 

 
Table 6 and Figure 14 show the results of this mod-

ified experiment, still running in the same configura-
tion.  Our network is still overloaded, and we see that 

not all buffers are successfully received.  However, the 
percentage success rate has risen to between 66% and 
73%.  There are many streaming media applications 
that would be unusable with a 13% success rate, but 
acceptable at 66%.  

Notice that since only one leader exists in each 
LAN group, the number of hosts that reside with it 
behind the same bottleneck link should not (and does 
not) affect the quality of data transfer across the link.  
Thus, to the extent that the SOLO heuristics are able to 
detect bottleneck links and correctly identify co-
located hosts, SOLO-assisted performance should be 
sharply better than what one sees in more traditional 
BitTorrent or PPLive swarm-style downloads. 
 
4.3. Network Interface and NAT/Firewall 
Checking 
 

For reasons of brevity, we were not able to present 
experiments to evaluate the network interface detection 
and NAT/Firewall detection mechanisms supported by 
SOLO.  Nonetheless, even in the previous experiments, 
SOLO’s network interface detection plays a useful role.  
As readers may be aware, Emulab machines have six 
network interfaces, one on the 159.98.36 network.  
SOLO’s interface detection mechanism was used to 
ensure that the overlay multicast used all active inter-
faces except 159.98.36 network. 
 
5. Conclusion and Future Work 
 

Our paper presented SOLO, a live-objects based 
system to assist transport protocols in configuring 
themselves to cope with potentially challenging net-
work conditions. SOLO has a rich set of functionality, 
supporting a wide range of adaptations that are seen in 
systems such as BitTorrent and PPLive.  Our experi-
ments focused on one novel capability enabled by 
SOLO: detection of bottleneck links that partially iso-
late groups of nodes.  We demonstrated that by exploit-
ing such information, one can create streaming multi-
cast protocols that are more effective than protocols 
that fail to do so.  Down the road, we plan to explore a 
wider range of adaptations, and support for non-
multicast applications such as VOIP. 
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